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SUMMARY

The Janzen-Reyleigh method of expansion in powers of the stream
Mach number M, is utilized for the calculation of the velocity poten~
tial for steady subsonic flow past a paraboloid of revolution. Only the
first two terms of this expansion are calculated, the first term being
the incompressible expression for the velocity potential and the second
being the term in Mmz. A closed expression is obtained for the second
term in the form of a double infinite integral which contains Bessel
functions under the integral signs. The methods of evaluating such inte-
grals are not very numerous. Unfortunately, the present integral does
not yield to any of them. No attempt is made in the present paper to
evalusgte numerically this double infinite integral. Expressions for
the fluid velocity are given in the form of correction factors by which
the corresponding expressions for incompressible flow are multiplied in
order to take into account the effect of compressibility.

INTRODUCTION

The Janzen-Rayleigh method for the calculation of subsonic flow
past an obstacle, by expansion of the \{elocity potential in powers of
the undisturbed stream Mach number, has been extensively applied to two-
dimensional problems. A considerable void, however, exists in the liter-
ature insofar as applications of this method to three-dimensional axisym-
metric problems are concerned. Except for the case of flow past a sphere
and sporadic efforts to treat the next simplest case of axisymmetric flow
past a prolate spheroid, little has been accomplished in this area of
subsonic compressible-flow theory. Clearly, then, future work utilizing
the Janzen-Rayleigh method can be expended profitably on axisymmetric-
flow problems. A first step in this direction has been taken by
A. L. Longhorn who recently, at the suggestion of M. J. Lighthill, recon-
sidered the problem of subsonic flow past a prolate spheroid. (See
ref. 1.) The problem treated in the present paper was begun sometime
before the author became aware of the results of Longhorn. Fortunately,
the two problems complement one another in the sense that the one treated
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by Longhorn is limited to closed bluff bodies, whereas the present one
is concerned with a family of semi-infinite elongated bodies with round
noses.

The choice of the paraboloid of revolution as the solid body wes
mede for several reasons. First, the parsboloid being a semi~infinite
body and, in fact, a limiting case of the prolate spheroid, it was
thought probable that the analysis might involve functions of a more
elementary nature than for the case of a closed body. Second, the fluid
speed at the surface rises monotonically from zero at the stagnation
point to the undisturbed-stream value at infinity. Therefore, the criti-
cal value of the stream Mach number 1s unity, and hence there can be no
transonic influence in the entire subsonic range. ¥Finslly, the Janzen-
Rayleigh method being a thoroughly relisble one, the present investiga-
tion should provide useful information wilth regerd to the question of the
accuracy of the small-disturbance method for the calculation of compres-
sible flow past slender bodies in the neighborhood of the stagnation
point. -

ANATYSTS

The Janzen-Rayleigh method has often been described in the liter-
ature. In the present paper, therefore, only those equations necessary
for the formulation of the problem are used. The problem to be considered
is the subsonic flow past a paraboloid of revolution fixed in a uniform
stream of velocity U in the negative direction of the axis of symmetry.
The nature of axisymmetrical flow is such that the motion is the same in
every (meridian) plane through the axis of symmetry. The position of a
point in a meridian plane may be fixed by rectanguler Cartesian coordi-
netes x,y with the origin at t'hi-;_ foeus of the parabolic'meridian pro-
file. (See fig. 1l.) With the radius of curvature at the nose as the
unit of length, the equation of the meridian profile becomes

- <2< 3) @

For steady subsonic axisymmetric flows, the equation satisfied by
the velocity potential ¢ is the equation of continuity

a(o a,_991)4,3_(.f2_y§g)=o (2)

x\Pe ¥ 3/ dy\Pe

where

L

2 - [ - L;‘_l M 2(q - 1)] 7-1 (3)
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and

q nondimensional speed of fluid with U as unit of velocity
o] density of fluid moving with speed ¢

Py density of fluid moving with undisturbed speed U

M, Mach mmber of undisturbed stream, Etolo

Cy speed of sound in undisturbed stream

4 ratio of specific heats at constant pressure and constant

volume

If, now, a series expansion for ¢ in powers of Mm2 is assumed,
then

¢=§) B,

where the first term ¢o is the velocity potential in incampressible
flow. In this paper, only @; is calculated so that the form of @
to be found is

$ =9+ 48 ()

Thus, this expression for ¢ is substituted into equation (2), and equa-
tion (3) is utilized with

@)@

Then, when the coefficients of the zeroeth and first powers of Mw are
equated to zero, the following pair of equations is obtained:

ax(" 2%) ay(y :?0) =° 2

b2 b 2)-23h 93] 1aphe 92

where d, 1s the local velocity in incompressible flow.

(6)
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The veloclty potential for incempressible flow past the paraboloid
of revolution defined by equation (1) is readily found to be

B, = —x + 1 1og(x +Vx2 + y2) (1)

2

where ¢° 1s nondimensional with the undisturbed velocity U as unit

of velocity and the radius of curvature at the nose as unit of length.
Bquation (7) satisfies equation (5) and the boundery conditions of van-
ishing normal velocity at the surface and of vanishing disturbance veloc-
ity infinitely far from the paraboloid. The expression for the megnitude
of the incompressible fluid velocity is

2 1 1 ( X
g R P L (8)
o =2+ y2 22\ {2+ ?)
At this point it is convenient to introduce a new set of independent
varisbles. Ideelly, the appropriate coordinate system for the present
problem is a parabolic one which defines mutuslly orthogonal families of
confocal paraboles in a meridian plane. Thus, the conformal transformation
'z.=x+:l.y=(§+:I.'q)2=§2

gives

X =

(9)

]
N
ure
-

y

Then the surfaces £ = Constant = § o &re confocal paraboloids of revolu-

tion with the focus at the origin and the radius of curvature at the nose
equel to 2§°2. With this radius of curvature as unit of length, equa-

tions (9) are nondimensional end the solid boundary is given by go =L

V2

or equaetion (1).
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The equations corresponding to equations (5) and (6) are

aa( 10) % (B %) =0 (20)

and

Lh ) 5315k 9] agbes 0] o

where
t2 =0 and 12 =B
Also, equations (7) and (8) become, respectively,

$, = -a+ B+ 2 log 2a (12)

2 . __ 1 1
% l—a,+B+ll~a,(a.+B)

(13)

Then, equation (11) for the velocity potential ¢1 takes the form,
(Ga¢1) (Ba¢1) N ot R SR SR

Sa\" 3 /"3 \ 3 (a, + 5)2 2 (o + B)® 1602(a + B) 16a(a + B)2

(1%)

The complementary solution of this partial~differential equation is
easlily found by assuming a solution in product form:

g, = A(a)B(B)

Then the homogeneous form of equation (14) becomes

;i(,g) 1d(39§)=
Ra\ &/ Bap\ ap
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or

2
i(a.i‘:‘:) «NMa-o

e\ da) Tk

5 e (35)
afs @), g -
ds(sds)”uB °

=

wvhere A 1is an arbitrary real constant. Equations (15) are equivalent
forms of Bessel's differentiel equation for cylinder functions of order
zero. Therefore,

A= Co(i)“]a)
and

B = Co(NMB)

where Co represents any cylinder function of order zero.

The nature of the present problem is such that the cylinder function
involving the variable o shall behave well for a—>~ but not neces-~

sarily for a--»0 since a = «32—- at the so0lid boundary and never takes

on values less than that. On the other hand, the cylinder function
involving B must be of such type that it behaves well for the entire

range 0 2 B 2 . Clearly then,

A = K (Mo)
and
B = J,(WB)

where K, 1is the modified Bessel function of the second kind end zero
order and J, 1is the Bessel function of the first kind and zero order.
The graph of . K, resembles a rectangular hyperbols in the first quadrant
and that of Jp, a damped cosine wave. The general complementary solu-
tion ¢lc of equation (14) can then be written as

oo = 2 oo (M) 30(rf) (16)

vhere the values of c, are arbitrary constants to be determined by

means of the boundary condition that the fluid-veloclity tomponent normal
to the surface of the paraboloid shall venish.
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A suitable particular integrel of equation (14) is now sought.

Unfortunately, the right-hand side of that equation cannot be separated into

a sum of products of functions of a alone and of B alone; hence, the
task of finding a particular integral directly from equation (14) is prac-
tically futile. However, by temporary use of polar coordinates as inde-
pendent varisbles the desired separation of variables can be achieved.
Thus,

X =1 cos 0

(17)
y=1r8in 0

where the radius vector r is nondimensional with the radius of curvature
at the nose of the paraboloid as unit of length and where the angle 6 is
measured positive counterclockwise. (See fig. 1.)

The polar equation of the parabolic meridian profile is

-
¥ 1+ cos O (18)

and the expressions for the incompressible velocity potential and fluid
speed given by equations (7) and (8), respectively, are

¢o=-rcose+]§-logr(l+cos )

(19)

9P =1+ ——t
2r2(1 + cos 9) !

Thus, at the upper surface of the paraboloid of revolution, the expression
for the Incompressible fluid speed is simply

= 1
qo—sinae‘

It is interesting to note the curious fact that this expression for the
velocity at the surface of a paraboloid of revolution is precisely the
seme as that for the velocity at the surface of a two-dimensional para-
bolic cylinder. The explanation lies in Munk's rule which states that
the surface velocity on any ellipsold immersed in s uniform flow along

a principal axis is the projection of the maximm velocity (in the pres-
ent case, unity) on the tangent plane to the surface. (See ref. 2.) This
is obviously the same for both a parabolic cylinder and a paraboloid of
revolution in view of the fact that Munk's rule includes the two-
dimensional case.
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When equations (17) and (19) are utilized, differential equation (6)
for the velocity potential ¢l takes the following form:

é_(2§.¢_l>_3_ A DT >
brr or +Bp.|:(1 }L)p 2|J.+2r 8r21+|"'+(l+|.1)2_| (20)

where p = cos 6.

Note that the desired separation of varisbles has been achieved on
the right-hand side of equation (20). The task of finding a perticular
integral then becomes a routine problem. The following particular inte-
gral ¢lp of equation (20) has been constructed with the point in mind

that it be well behaved everywhere at the surface of the boundary and in
the field of flow:

=, -1 542105 . I
¢lp il 8I_logr(l+p.) +8r2E log 2 T

1-:"'_- w Llog?(1 + n) + (1 + -;- p log 2)1og(1 + ) -

- B log(1l + - log 2
i, f og(L + p) - log au (21)
2" Jo 1-p

This pa.rticula.r- integral may be expressed in terms of parabolic coordi-
nates by mesans of the :I':‘ollow:[ng equetions of transformation:

r=a+p
(22)
a-=-B

a+ B
The general solution for the velocity potential ¢l then becomes

=

- 8a) 1 I_l
¢=l9’.——£-1’. 1 log + —-logQ--P--
bao+p 8a+p (a,+B)2 8(a.+B)22 20

a-~-B 2a la-8 1
u.+Bl°g2a.+B+(l+2 +Blog?) og

Y
L a

a~-B
l1oa-p [op 1og(l + p) - log 2 =
sevedo T an) + 3 e (M) ()
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vhere the arbitrary constents c, are determined by means of the bound-

ary condition that the normal component of the fluld velocity at the sur-
face of the paraboloid shall venish. In addition, there is the require-
ment that the disturbance velocity shall vanish at infinity for points

not near the paraboloid. Now, ¢o » being the solution for incompressible
flow, satisfies these boundary conditions, and hence ¢l must also sepa-

rately satisfy them. An examinstion of equation (23) shows that the dis-
turbance velocity vanishes at Infinity. The normsl boundary condition
3,

(-a:-)a;% = O then yields the following equation for the determination of

the arbitrary constants:

. _ 3
;L dnJo(xn\[E) = Tl_+—125—)5 2L - 28)|-1 + lo-g(l + 23)] +

(1 + 2B)log 2} + 1_-#@_[_ % log22 +
(1 + 23)1*

42- log2(1 + 28) + I(Bﬂ

= F(B) (2k)

where, for convenience of expression,

Mo (M),
dn:"','—é'lﬁ_(ﬁ) n
and

1-28

I+2B 1og(l + p) - log 2
I(p) = k) au
0 1-p

Now, the range of the varieble B along the upper surface of the solid
boundary extends from O to o, Therefore, the determination of the
complementary function ¢lc must proceed along lines:corresponding to

the passage from & Fourier series to a Fourier integral. Thus, multi-

plying both sides of equation (24) by yBIo(AnfB)aff and integrating from
O to an arbitrary upper limit b give
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= __%__Efb F(B)VBI,(AnVB)avB (25)
[le(bKn)] 0

vhere Ny, Ng, - o o are different values of A for which Jy(bhn) = O.
In equation (25), use has been made of the well-known orthogonality
condition

b
[ 0 (rlB)o(naiB) i = o O # Ha)
= L:. Jl(b?\n)] ® (M = M)

The quantity , 1s now defined as D), /b , and the upper limit b
is taken to be very large. The difference between two consecutive values
of ®p may then be obtained by considering large zeros (b\,) of Jg.
Thus, the approximating formila for the nth zero is

b, = (n - %)n (26)

Hence, the distance between consecutive zeros approaches =t and the
difference between two consecutive values of w, becomes

-2
B b

or

Now, for large values of bM\p,

J 1 (b?\n) =

or with the aid of equation (26),

=]

~(-1)
19
2

J1(PAn) =

e
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It follows then from equation (25) that

b
3, = “’&”h/; F(B)VBIo(wVB)avh

Introducing this expression for d, into equation (16) for the comple-
mentary function ¢1c » replacing the summation by integration, and letting
the upper limits go to infinity lead to the following expression:

® Ko (@ #&)J (wVB) ®
g -z f 500 o f F(£2)7 o (at)t at (27)
0 Kl(-“-’-) 0
V2
Inserting this expression for the complementary function into equation (23)
then yields the exact form for the second term in the Janzen-Rayleigh

method for the calculation of subsonic flow past a paraboloid or revolu-
tion. Equation (27) can be verified by means of the boundary condition

a¢1c> _
( ™ ) = F(B)

and the recurrence relation

[axoaiwﬁ) ot --2 Kl(ﬂ)

Thus the well-known Fourler-Bessel integral (ref. 3) is obtained:

F(B) =L/;°° ) dmL/;m F(£2)3 (ot )T (0Bt at

NUMERICAT. CONSIDERATIONS

Attempts to evaluate the right-hand side of equation (27 ), or even
to reduce it to a single infinite integral, have thus far proved fruit-
less. It appears certain that, in order to obtain mmerical results,
equation (27) for @, or its derivatives with regard to « and B

must be calculated directly. This calculstion is not done in the present

e —— o v e e

-———
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paper. Rather, in preparation for such numerical computations it is
necessary to evaluate the integral appesring in the expression (eq. (24))
for F(B); thus,

1(s) f1+25 tosll L u) - 108 2 g, (0gBg=

Then, the following expansions are considered:

log(l + u) = -i (-1)" };f (-i<p21)
and
log 2 —-Z (-l)n
n=1

It follows that

n
log(l + p) - log 2 _ i (-1)” < ol
1-wn =1 o @1

Hence

ey =S LTS

2 (1Sug1)  (28)
n=1 m=1

B [Py

Note that the convergence has been improved by the act of integration to
include p = -1. Thus,

B'—) 0 n=
or
p—>1
where
n
1
Sp=2_ T
m=1
Now
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and
= (-1)0 .2
22k
Therefore,
lim I(B) = log22 - :TZ & - 0.58224 (29)

B—0
For B-—» or p—-1, equation (28) gives
;- (D% - ("
un 1(p) =2~ > G
B—> n=1 m=1

or after rearrangement of terms on the right-hand side

Blim 1(p) _-Z ( 1) n+i ®n

oy | =1 2n(2n + 1)
i S
=- lm I(B) +> —2
B—>0 n=1 2n(2n + 1)

The series on the right-hand side can be rendered more rapidly convergent
by repeated application of Kummer's transformation (ref. 4); 3 thus,

2 19 9 1
lm I(B) =% - L logf2+ 242
Jam (8) 53 og? +60+1|-§|_(n+1)(2n+5)(2n+5)+
15 < Sn
'é'nzn(an+1)(2n+3)(2n+5)
=~ 1,060

Finally, for 0<B<w® or p2<1,

[+ ]

1(p) =3 S &2

n=l m=1

© n+l n (-l)m
log 2 log(l - p) - E___ >
p=1 0+ 157

m

© 2n+l
log 2 log(l - p) - 3 L 10g(1 + p)log(l - p) + Z Tt

2n

- i —————— —m—
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where
t2n=l—%+%—%;+...-%=szn—sn
Thus,
© 2n+l
_1 LB 2n /1‘25) 0<B<w
I(B)’2l°81+2;31°g2(l+25)+n=12n+1\1+2;3 (0<p<=)
(30)

With the aid of equations (29) and (30) the function F(B) can be com-

puted for all finite values of B. For 0< B < =, the expression for
F(B) in equation (24) becomes

F(p) = —2—— $3(1 - 28) [1 + 10g(1 + 25)] + (1 + 28)log 2\ +
(1 + 28)> |2 .
o0 2n+l
—];l-!'-s—-é]:log 28 log 2(1 + 28) + 5 —2n (1 -20

(1 + 28) =1 2o+ 1\l + 25)

Téble I lists values of F(B) and I(B) for the range 0 2B 29,
and figures 2 and 3 show the grsphs of each. For the later purpose of
calculating the velocity distribution in the neighborhood of the stag-
ngtion point and also along the axis of symmetry of the flow, genersl
expressions are presented in the following section.

CAICUIATION OF FLUID VELOCITY AT THE SOLID BOUNDARY

AND ATONG THE AXIS OF SYMMETRY OF FLOW

The fluid velocity at a point on the body is given by

vhere ds_ 1is the element of arc in the direction in which 17 increases
and
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9 = m@—i—)a:% (31)

With the aid of equations (12) and (23), equation (31) yields the fol-
lowing expression for the fluid speed along the solid boundary for the
range 0 2B <1:

_ 2[ 1-8 2 1 )
L = dgo|L + M 1(1+2B))h|}0g1+213 log ) +2I(B)]

1-28 log(l+2p) (3 -28)(1+A4p) log 2 . 1 _

(1 + 2g)* Lp o(1 + 28)* 1+28 2(1+ 28)2

6-5 log 2 _ 1 log 2 + a¢lc
o(1 + 28)° (1 + 2;3)h op o=

(32)

ol

where q__ = 2B 15 the magnitude of the £luid velocity at the sur-
© Y1+ 28
face in incompressible flow and ¢lc is given by equation (27).
The fluld velocity along the axis of symmetry of the flow is given
by
w2 (@)
ax Ba. B_.:o

Then with the aid of equations (12) and (23),

2
q’ﬂm=qxol+_-—_—l|.x(2;c_1)1-1088x+§(l+ﬁﬁ')+8x<aa a0

(33)

where q,, = -1 + 2%:' is the velocity of the fluid along the axis of

symmetry in incompressible flow. Equations (32) and (33) have the form
of correction factors by which gq,, and gq,, are multiplied in order

to take into account the effect of compressibility. It may be desirable
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to utilize the arc length 8g of the parabolic meridian profile as the
reference varigble rather than p. The arc length 8gs with the radius
of curveture at the nose as unit of length, is given by

8p = %[\Izs(l + 28) + logly2p + VI + 23)] (34a)
or
) 6
sin 1+ s8in =
- 2 1 2
sg = =5 +_§ log _co;__a:_ (3)-I-'b)
2

3
For purposes of comparison, consider the two-dimensional case of uniform
subsonic flow past a parsbolic cylinder. The following formulas, corre-
sponding to equations (32) and (33), are easily obtained from reference 5:

- 12 2 0/0 cos © 3 )
95 = 9s0 l-EMw cos -g-[2+cos-2—(—;?n-_—a—--ll-cos-2-log2cos-§)]
2

(35)

and
1
i T P - log ¢ x
R O Rl [t e - e g | S

= 8 = - L
where 9 = sin 5 and Lo 1+ ‘/_2;.

CONCLUDING REMARKS

In conclusion, the present paper provides an additional example to
the sparse litersture on subsonic exisymmetrical flow. The sttempt has
been made to choose as solid boundary a shape which does not require
involved and cumbersome analysis but, at the same time, which is of
interest to both theoretical and applied aerodynamicists. Attention is
particularly directed to the double infinite integral of equation (27).
Such integrals, involving Bessel functions under the integral signs, are
not only of great interest to the pure mathemstician but are also of
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extreme importence in many branches of mathematicel physics. The addi-
tion of another one to the large number of such integrals which have
already been evaluated can generally be counted upon to aid in the solu-
tion of many problems in varied fields.

Langley Aeronauticel Leborstory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 1k, 1956.
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TABLE I

TABULATED VALUES OF THE FUNCTIONS I(B) AND F(B)

B 1(B) F(B) B 1(B) F(B)

~0.58224 -1.62932 875 0.20199 0.07033
.02083 -.54184 ~-1.18932 .000 «25103 . 04879
LOh167 -.50378 -.85251. .200 31729 02452
.06250 -.16788 -.59387 400 37215 .00895
.08333 -.13393 -+39490 .600 41845 -.00105
10417 -.40176 -.24175 ."700 13900 -.00461
.12500 - 36666 -.12398 45812 -.Q0746

Qe
[oNe]

14583 -34202 -.03368 L7591 -.009Th

VOOV FUWDNHEREREEO
owu

16667 -.31459 .03524 .000 29255 -.01155
18750 -.28825 .08Th2 56184 -.01612
.20833 -.26309 .12650 . 6142 -.01693
«22017 ~+23905 15527 <500 .65589 -.01633
«25000 -.21602 17595 .000 .68955 -.01523
.31250 -.15249 «20490 .000 . T4108 -.01283
«37500 -.09606 .20510 .000 . TT160 -.0107h
L3750 -.04555 .19195 .000 .80804 -.00904
.50000 0 17329 .000 .83123 -.00TTL
56250 LOk132 15309 .000 85016 - . 0066l
.62500 07901 13333 o 1..06000 0

« 5000 14535 .09829
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Figure 1.~ Profile of parabolold of revolution in meridian xy-plane.
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Figure 2.- The boundary function F(p) plotted against B.
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